Learning Spark: Lightning-Fast Data Analytics, 2nd Edition

26
Learning Spark: Lightning-Fast Data Analytics, 2nd Edition
Jules Damji | August 11, 2020 | ISBN: 1492050040 | 300 pages | True PDF | 15 MB


Data is getting bigger, arriving faster, and coming in varied formats—and it all needs to be processed at scale for analytics or machine learning. How can you process such varied data workloads efficiently? Enter Apache Spark.
Updated to emphasize new features in Spark 2.x., this second edition shows data engineers and scientists why structure and unification in Spark matters. Specifically, this book explains how to perform simple and complex data analytics and employ machine-learning algorithms. Through discourse, code snippets, and notebooks, you’ll be able to:
• Learn Python, SQL, Scala, or Java high-level APIs: DataFrames and Datasets
• Peek under the hood of the Spark SQL engine to understand Spark transformations and performance
• Inspect, tune, and debug your Spark operations with Spark configurations and Spark UI
• Connect to data sources: JSON, Parquet, CSV, Avro, ORC, Hive, S3, or Kafka
• Perform analytics on batch and streaming data using Structured Streaming
• Build reliable data pipelines with open source Delta Lake and Spark
• Develop machine learning pipelines with MLlib and productionize models using MLflow
• Use open source Pandas framework Koalas and Spark for data transformation and feature engineering

No comments have been posted yet. Please feel free to comment first!

    Load more replies

    Join the conversation!

    Login or Register
    to post a comment.

    Advanced Search